THE POSSIBILITY OF REGULATING THE SEED GERMINATION OF WHEAT CULTIVAR VASILISA BY TREATMENT WITH EPIBRASSINOLIDE AND WITH A 150 mMOL NACl BACKGROUND

A. Semeniuk
Brest State University named after A. S. Pushkin,
Brest, Republic of Belarus
semeniuka1999@gmail.com

The effect of epibrassinolide solutions at concentrations of 10^{-7}, 10^{-8}, and 10^{-9} % with a background salinity of NaCl of 150 mmol on the change in the length of seedlings of soft spring wheat of the Vasilisa variety was studied. It was shown that epibrassinolide at a concentration of 10^{-8} % significantly reduces the negative effect of salinization.

Keywords: epibrassinolide, soft spring wheat, chloride salinity.

Under the conditions of global warming, that leads to aridization, soil salinization is becoming a significant problem [1], since it harms the development of plants, especially in the early stages. It is known from the literature that epibrassinolide reduced the negative effect of salinity upon exogenous use in Brassica napus, Arabidopsis thaliana, Cucumis sativus, Medicago sativa and other plants [2, 3]. In this regard, it is relevant to conduct studies to study the effect of epibrassinolide on seed germination of an important grain crop – soft wheat under stressful salinization conditions.

The study was conducted in laboratory conditions, the object is the seeds of soft spring wheat cultivar Vasilisa. The experiment was carried out according to GOST 12038-84 by the roll method. Previously, the seeds were disinfected with a 30% sodium hypochlorite solution for 10 minutes. Seeds germinated at a temperature of 22 °C. The experimental options are solutions of epibrassinolide at concentrations of 10^{-7}, 10^{-8} and 10^{-9} % (hereinafter – EB7, EB8, EB9) with background salinization of NaCl (150 mmol). NaCl in the background concentration was used as a control. Statistical processing of the results was carried out using MS Excel 2007.

Statistical analysis of the data showed that all used concentrations of the epibrassinolide solution under conditions of high salt content showed growth-promoting activity (Fig. 1) compared to the control.

On the seventh day the greatest positive effect was observed with the use of EB9 solution: an increase in seedling length by 27,19 % relative to the control was revealed. However, on the 14 day of the experiment, EB8 exhibited the highest biological activity. The seedling length significantly increased at $P \leq 0.05$ by 56,8 % relative to the control. Thus, under the conditions of chloride salinization, the treatment of spring wheat seeds with the three studied epibrassinolide solutions leads to an increase in the length of the seedling.

BIBLIOGRAPHY

FEATURES OF APPLICATION OF THE AMDAHL’S LAW AND THE GUSTAFSON – BARSIS’S LAW FOR THE EVALUATION OF THE MAXIMUM SPEEDUP OF COMPUTATIONS IN FORECASTING OF RADIONUCLIDE’S SPATIAL MIGRATION IN NATURAL DISPERSE ENVIRONMENT

P. Shalkevich¹, S. Kundas²

¹Belarusian State University, ISEI BSU, Minsk, Republic of Belarus
pavel.shalkevich@gmail.com
²Belarusian National Technical University, Minsk, Republic of Belarus
kundas@tut.by

Features of application of the Amdahl’s law and the Gustafson – Barsis’s law for calculation of the maximum speedup of computation and evaluation of the effectiveness of parallel computing algorithms in solving problems of forecasting of radionuclide’s spatial migration in natural disperse environment are considered.

Keywords: parallel computing, parallel algorithms, Amdahl’s law, Gustafson – Barsis’s law, forecasting of radionuclide’s migration.

In previous works [1, 2] authors developed the parallel computational algorithms which were subsequently implemented in a software module for forecasting of radionuclide’s spatial migration in natural disperse environment, which is a part of the SPS (Simulation Processes in Soil) software package [3]. To evaluate the effectiveness of the developed computational algorithms and to calculate the maximum speedup of computation the Amdahl’s law was used [4], however, in some cases, the Gustafson – Barsis’s law could be used for such purposes instead [5].

The maximum possible speedup of computation of forecasting the radionuclide’s spatial migration in natural disperse environment, calculated according to Amdahl’s law, shows the difference between the time of execution of the program in parallel mode and the time of its execution in sequential mode with the same initial data. The maximum possible speedup of computation, calculated according to the Gustafson – Barsis’s law, shows how efficiently can the parallel mode of the program execution be organized in the conditions of changing the initial data and increasing the complexity of the task. Therefore, Amdahl’s law allows to analyze the efficiency of computations parallelization and the Gustafson – Barsis’s law allows to analyze the operation of a parallel program without taking its sequential mode into account.

The necessity of the Amdahl’s law application for the analysis of parallel computational algorithms in the developed software [3] is explained by the fact that these algorithms were obtained by parallelizing sequential algorithms. However, given the fact that prior to the development of a software module [3], there was no specialized software for forecasting of radionuclide’s spatial migration based on the parallel computing technologies, its analysis using the Gustafson – Barsis’s law is an actual goal.

BIBLIOGRAPHY