Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/10666Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Galibus, T. | - |
| dc.contributor.author | Matveev, G. | - |
| dc.date.accessioned | 2012-05-31T20:28:15Z | - |
| dc.date.available | 2012-05-31T20:28:15Z | - |
| dc.date.issued | 2007 | - |
| dc.identifier.citation | Matveev, G. Generalized Mignotte’s Sequences Over Polynomial Rings / T. Galibus, G. Matveev // Electronic Notes in Theoretical Computer Science 186. - 2007. - P. 43–48. | - |
| dc.identifier.uri | http://elib.bsu.by/handle/123456789/10666 | - |
| dc.description | Полный текст документа находится на www.elsevier.com/locate/entcs | ru |
| dc.description.abstract | This paper introduces the generalization of Mignotte modular secret sharing over the poly-nomial rings. Mignotte proposed threshold secret sharing over the ring of integers. We extend his method for the ring of polynomials which is Euclidean as well and therefore allowing to use the Chi-nese Remainder Theorem. In particular, we prove that any access structure can be realized within this modular approach. Further, we put the bounds on the number of participants of such secret sharing scheme with the moduli of the same degree. And finally we estimate the information rate of the new scheme. | ru |
| dc.language.iso | en | ru |
| dc.subject | ЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Информатика | ru |
| dc.title | Generalized Mignotte’s Sequences Over Polynomial Rings | ru |
| dc.type | Article | ru |
| Appears in Collections: | Статьи факультета прикладной математики и информатики | |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

