Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/158757
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalugin, V.-
dc.contributor.authorBabakhin, Y.-
dc.date.accessioned2016-10-18T11:30:55Z-
dc.date.available2016-10-18T11:30:55Z-
dc.date.issued2016-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/158757-
dc.description.abstractThe goal of the study is to construct an algorithm of determining the overall gaming activity state in online-games. Apart from the classification of states, the problem of predicting future gaming activity states has arisen. Both goals are accomplished by using multivariate econometric models with heterogeneous structure and the assumption of the hidden Markov dependency of the classes of states. In particular, Markov-Switching Vector Autoregression Models (MSVAR) have been used. The constructed theoretical methods have been applied to the measuring gaming activity in the famous online-game: "World of Tanks".ru
dc.language.isoenru
dc.publisherMinsk: Publishing Center of BSUru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.subjectЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Информатикаru
dc.subjectЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Медицина и здравоохранениеru
dc.titleClassification and Prediction of the Gaming Activity States in Online- Games Based on the Regime Switching Modelsru
dc.typeArticleru
Appears in Collections:2016. PATTERN RECOGNITION AND INFORMATION PROCESSING (PRIP’2016)

Files in This Item:
File Description SizeFormat 
Malugin_Babakhin.pdf503,8 kBAdobe PDFView/Open
Show simple item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.